教师姓名:明梅
职 称:教授
系 所:数学系
研究领域:偏微分方程
电子邮件:mingmei (at) ynu.edu.cn
教育背景:
中科院系统与科学研究院数学所,2005-2010,理学博士
电子科技大学数学学院,2001-2005,理学学士
工作经历:
2019.4至今,太阳成集团;
2013.3-2019.4,中山大学数学学院;
2012.3-2013.3,巴黎高师数学系(ENS,DMA)和巴黎数学基金(FSMP)博士后;
2011.1-2011.12,Cergy-Pontoise大学数学系博士后;
2010.7-2012.2,电子科技大学数学学院,讲师。
教授课程:高等数学, L-P分解理论
主要研究领域:带接触角水波问题(Water-waves Problem),角形椭圆理论;
主持项目:
国家自然科学青年基金,不光滑区域上的水波问题及两相流的线性稳定性分析;
国家自然科学面上项目,角形区域水波问题及带状区域多重孤立波解。
部分受邀请报告列表:
2022年南京第九届华人数学家大会(ICCM2022);
2023年法国Grenoble傅里叶研究所<New Trends in Mathematical Fluid Dynamics>暑期班;
论文列表:
[1] Mei Ming and Zhifei Zhang, Well-posedness of the water-wave problem with surface tension, J. Math. Pures Appl., 92(2009), 429-455
[2] Mei Ming, Ping Zhang and Zhifei Zhang, Large time well-posedness to the 3-D capillary-gravity waves in the long-wave regime, Archive for Rational Mechanics and Analysis, 204(2012), Issue 2, 387-444
[3] Mei Ming, Ping Zhang and Zhifei Zhang, Long wave approximation to the 3-D capillary-gravity waves, SIAM. J. Math. Anal.,44(2012), 4, 2920-2948
[4] Mei Ming, Jean Claude Saut and Ping Zhang, Long time existence of solutions to Boussinesq system, SIAM. J. Math. Anal., 44(2012), 6, 4078-4100
[5] Mei Ming, Frederic Rousset and Nikolay Tzvetkov, Multi-solitons and related solutions for the water-waves system, SIAM. J. Math. Anal., 47(2015), 1, 897-954
[6] David Lannes and Mei Ming, The Kelvin-Helmholtz instabilities in two-fluids shallow water models, Fields Institute Communications,75(2015),185-234
[7] Mei Ming and Chao Wang, Elliptic estimates for Dirichlet-Neumann operator on a corner domain, Asymptotic Analysis, 104(2017), 103-166
[8] Mei Ming, Weighted elliptic estimates for a mixed-boundary system related to Dirichlet-Neumann operator on a corner domain, DCDS-A, 39(2019) Issue 10, 6039-6067
[9] Mei Ming and Chao Wang, Water waves problem with surface tension in a corner domain I: A priori estimates with constrained contact angle, SIAM. J. Math. Anal.,52(5)(2020), 4861-4899
[10] Mei Ming and Chao Wang, Water waves problem with surface tension in a corner domain II: The local well-posedness, Commun. Pure Appl. Math., 74 (2021), no. 2, 225–285.
Preprints:
1. Mei Ming and Chao Wang,Local well-posedness of the capillary-gravity water waves with acute contact angles, arXiv:2112.14001, submitted
2. Mei Ming, A priori energy estimate with decay in weighted norms for the water-waves problem with contact points, arXiv:2401.00377, submitted